A transductive least squares support vector machine with the difference convex algorithm
نویسندگان
چکیده
منابع مشابه
Least Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملA Least Squares Support Vector Machine Sparseness Algorithm
Abstract This paper proposes a method which using density index function to sparse LS-SVM in highdimensional feature space, and gives a new method which takes each sample point as a clustering center to make hypersphere, so as to determine the fuzzy membership function in high-dimensional feature space, thus to establish a new fuzzy least squares support vector machine model, So it is different...
متن کاملSparse least squares Support Vector Machine classifiers
In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equalit y constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. Ho wever, a d r a wback is that sparseness is lost in the LS-SVM ...
متن کاملSparse Least Squares Support Vector Machine Classiiers
In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equality constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. However, a drawback is that sparseness is lost in the LS-SVM case ...
متن کاملEfficient Convex Relaxation for Transductive Support Vector Machine
We consider the problem of Support Vector Machine transduction, which involves a combinatorial problem with exponential computational complexity in the number of unlabeled examples. Although several studies are devoted to Transductive SVM, they suffer either from the high computation complexity or from the solutions of local optimum. To address this problem, we propose solving Transductive SVM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2014
ISSN: 1598-9402
DOI: 10.7465/jkdi.2014.25.2.455